Fourth-order symplectic integration

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourth-order Symplectic Integration*

In this paper we present an explicit fourth-order method for the integration of Hamilton’s Equations. This method preserves the property that the time evolution of such a system yields a canonical transformation from the initial conditions to the final state. That is, the integration step is an explicit symplectic map. Although the result is first derived for a specific type of Hamiltonian, it ...

متن کامل

High Order Three Part Split Symplectic Integration Schemes

Symplectic integration methods based on operator splitting are well established in many branches of science. For Hamiltonian systems which split in more than two parts, symplectic methods of higher order have been studied in detail only for a few special cases. In this work, we present and compare different ways to construct high order symplectic schemes for general Hamiltonian systems that can...

متن کامل

Fourth order and fourth sum connectivity indices of tetrathiafulvalene dendrimers

The m-order connectivity index (G) m of a graph G is     1 2 1 1 2 1 ... ... 1 ( ) i i im m v v v i i i m d d d  G where 1 2 1 ... i i im d d d  runs over all paths of length m in G and i d denotes the degree of vertex i v . Also,        1 2 1 1 2 1 ... ... 1 ( ) i i im m v v v i i i ms d d d X G is its m-sum connectivity index. A dendrimer is an artificially manufactured or synth...

متن کامل

Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations

Implicit integration factor (IIF) methods were developed for solving time-dependent stiff partial differential equations (PDEs) in literature. In [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368–388], IIF methods are designed to efficiently solve stiff nonlinear advection–diffusion–reaction (ADR) equations. The methods can be designed for an arbitrary order of accuracy. The st...

متن کامل

Equivariant Constrained Symplectic Integration

We use recent results on symplectic integration of Hamiltonian systems with constraints to construct symplectic integrators on cotangent bundles of manifolds by embedding the manifold in a linear space. We also prove that these methods are equivariant under cotangent lifts of a symmetry group acting linearly on the ambient space and consequently preserve the corresponding momentum. These result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica D: Nonlinear Phenomena

سال: 1990

ISSN: 0167-2789

DOI: 10.1016/0167-2789(90)90019-l